
J .  FZuid Mech. (1984), vol. 145, p p .  71-94 

Printed in @reat Britain 
71 

Generation of instability waves in flows separating 
from smooth surfaces 

By M. E. GOLDSTEIN 
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135 

(Received 30 June 1983 and in revised form 6 March 1984) 

This paper analyses the coupling between an imposed disturbance and an instability 
wave that propagates downstream on a shear layer which emanates from a separation 
point on a smooth surface. Since the wavelengths of the most-amplified instability 
waves will generally be small compared with the streamwise body dimensions, the 
analysis is restricted to this ‘high-frequency’ limit and the solution is obtained by 
using matched asymptotic expansions. An ‘inner ’ solution, valid near the separation 
point, is matched onto an outer solution, which represents an instability wave on a 
slowly diverging mean flow. The analysis relates the amplitude of this instability to 
that of the imposed disturbance. 

1. Introduction 
It has been known for some time that acoustic excitation can have a strong effect 

on separated flows over airfoils a t  high angles of attack - completely eliminating the 
separated regions in some cases. There are some instances where this can be attributed 
to an upstream boundary-layer transition promoted by the acoustic excitation (e.g. 
the experiments of Mueller & Batill 1982), but recent experiments of Ahuja, Whipkey 
& Jones (1983) show that periodic acoustic excitation can greatly reduce the size of 
the separated region even when the unexcited boundary layer is already turbulent. 
(Glass beads were used to trip the unexcited boundary layer in this experiment.) 

The magnitude of the effect can be seen from Ahuja, Whipkey & Jones’ photographs 
reproduced here as figure 1. Their visualization studies also revealed the presence of 
strong large-scale coherent motions on the separated regions of the excited flows. 
It is therefore possible that the diminished separation resulted from enhanced en- 
trainment promoted by instability waves that were triggered on the separated 
shear layers by the acoustic excitation. 

In this paper we analyse the coupling between an external disturbance and an 
instability wave on a shear layer that emanates from a smooth surface (shown 
schematically in figure 2), or, in the words of Morkovin (1969), determine the 
receptivity of this flow to the external ‘forcing’. Recall that an instability wave, being 
an eigensolution, is usually indeterminate to within a multiplicative constant. The 
determination of this constant, which, following Tam (1971), we refer to as the 
coupling coefficient, is the central purpose of this paper. 

We suppose that the disturbance is of small amplitude and has harmonic time 
dependence and that the mean-flow Reynolds number is large. Even though we 
restrict the analysis to two-dimensional incompressible motion, the relevant separated 
flow is still quite complex. However, we treat the unsteady motion as a linear 
perturbation about an appropriate steady flow and recall that there is now consid- 
erable evidence to support the contention (Sychev 1972; Messiter & Enlow 1973; 
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FIGURE 1. Acoustic control of flow separation as visualized in a smoke tunnel by Ahuja et al. (1983). 
Free-stream velocity = 13 m/s, angle of attack = 16", excitation frequency = 640 Hz. 

Smith, 1977) that  the steady solution for grossly separated high-Reynolds-number 
flows is given, to leading order in Reynolds number, by the Kirchoff (1869) 
free-streamline solution, as was proposed many years ago by Imai (19531, while recent 
work of Smith & Daniels (1981) demonstrates the validity of free-streamline theory 
even for smaller-scale separations that involve recirculation eddies. 

We, therefore, use the Kirchoff solution to describe the basic steady flow. It 
involves a constant pressure (and consequently zero velocity) wake separated from 
the region of flow by a dividing streamline across which the tangential velocity 
changes discontinuously. The Kirchoff solution is not, however, unique, since the 
location of its separation point can be chosen arbitrarily. There is one location of this 
point, referred to  as a Brillouin point, where the curvatures of the solid surface and 
separated streamline are equal to one another at the separation point. 

The actual location of the laminar flow separation point can be determined by 
treating the Kirchoff solution as the lowest-order approximation in a systematic 
asymptotic expansion in inverse powers of the Reynolds number and carrying the 
analysis to second order. Consideration of viscous effects in the vicinity of the 
separation point (Sychev 1972; Messiter & Enlow 1973; Smith 1977) shows that the 
flow has the well-known ' triple-deck ' structure of Stewartson (1969) and Messiter 
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FIGURE 2. Configuration of separated flow. 

(1970) in this region. These studies also show that the flow separates near its Brillouin 
point - the distance between the separation and Brillouin points being of the order 
of the inverse Reynolds number to the& power (Smith 1977). Moreover, a recent study 
of Sychev & Sychev (1980) suggests that  the Kirchoff free-streamline solution also 
applies to turbulent separations, but that the separation point then remains a t  a finite 
distance downstream of its Brillouin point as the Reynolds number becomes infinite 
(separation upstream of the Brillouin point is geometrically impossible because the 
dividing streamline would then cut the body surface; Imai 1953). Finally, Cheng & 
Smith (1982) show that even a laminar flow separation point will remain a t  a finite 
distance from the Brillouin point as the Reynolds-number becomes infinite when the 
body is sufficiently thin (i.e. when its thickness is of the order of the Reynolds number 
to the minus & power). 

Crighton & Leppington (1974), Rienstra (1981) and Orszag & Crow (1970) studied 
the excitation of instability waves on shear layers emanating from sharp trailing 
edges. They analysed the small-amplitude harmonic motion imposed on a steady flow 
over a semi-infinite fiat plate with zero mean velocity on one side and uniform mean 
velocity on the other ; so that a velocity-discontinuity shear layer extended 
downstream from the trailing edge. Their calculations show that this problem has 
a solution that (1) remains bounded a t  large distances from the trailing edge and (2) 
has a square-root singularity at that edge. But they also show that the problem 
possesses an eigensolution associated with the spatially growing instability wave on 
the downstream velocity discontinuity shear layer and that this eigensolution has a 
corresponding square-root singularity a t  the edge. An arbitrary constant multiple of 
the latter can therefore be added to the solution that is bounded at infinity, and the 
constant can then be adjusted to eliminate the singularity between the two solutions, 
i.e. to  satisfy a ‘Kutta’ condition at the edge. Calculations involving viscosity 
(Daniels 1977) confirm the validity of the Kutta condition for sufficiently high- 
Reynolds-number laminar flows, and carefully controlled experiments (Bechert & 
Pfizenmaier 1975) indicate that the Kutta condition is also satisfied in many real 
flows. 

The present study reveals that flows separating from smooth surfaces exhibit 
similar behaviour when their separation points are not too close t o  their Brillouin 
points, i.e. there is a forced inviscid solution that does not involve an instability wave 
and possesses a square-root singularity at the separation point and an inviscid 
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eigensolution that does involve a downstream-propagating instability wave and 
possesses a corresponding singularity at the separation point. One might therefore 
conjecture that the correct inviscid solution to the present problem is also given by 
the linear combination of these two solutions that is non-singular at the separation 
point, i.e. that satisfies a ‘Kutta ’ condition there. This requirement completely 
determines the amplitude of the instability wave in terms of the ‘forcing’ amplitude, 
i.e. determines the coupling coeficient. 

This coefficient is then given by a very simple formula ((6.2) below), which is 
independent of the precise nature of the forcing. We regard it as a central result of 
this work. But, since the Kutta condition has not even been previously proposed (not 
to mention verified) for the present situation, it is important to demonstrate that it 
applies in a t  least one special case. 

We do this for the case of ‘quasi-steady’ laminar separation by analysing the 
viscous (and nonlinear) effects in the vicinity of the separation point. By ‘ quasi-steady ’ 
we mean that the time enters only as a parameter, in the triple-deck region which, 
as we shall establish subsequently, surrounds the separation point in this case. This 
will be the ewe whenever the Strouhal number is much smaller than the Reynolds 
number to the power, which is the situation most likely to be encountered in 
practice. Our analysis reveals that  it is the viscous (and nonparallel-flow) effects 
resulting from the steep velocity gradients in the vicinity of the separation point that 
physically produce the coupling between the instability wave and the external 
forcing. The results strongly suggest that  the Kutta condition will not be satisfied 
when the Strouhal number is of the order of the + power of the Reynolds number. 
This is in marked contrast with the sharp-training-edge case, where the Kutta  
condition is still satisfied a t  these larger Strouhal numbers (Daniels 1977; Brown and 
Daniels 1975). 

Since the present analysis is fairly complex - though the mathematics are relatively 
straightforward - I will outline the steps in some detail. The general problem is 
formulated in $2. Since i t  turns out that the characteristic wavelength of the most 
rapidly growing instability wave is small compared with the streamwise body 
dimensions, I have restricted the analysis to this high-frequency limit. Notice that 
we do not require the acoustic wavelengths (which is in fact infinite since the flow 
is incompressible) to be small. I n  $ 3  we develop the scaling and appropriate form 
of the relevant asymptotic expansion for the region of flow where the wavelength of 
the instability wave is of the same order as the transverse dimension of the separated 
region. Here i t  is necessary to consider separately ( 1 )  the case where the transverse 
body dimension is large compared with the characteristic wavelength of the unsteady 
motion, and ( 2 )  the ‘slender-body’ case where the wavelength is of the same order 
as that dimension. I n  case ( 1 )  we have to  distinguish between the two subcases where 
separation does and does not occur a t  a Brillouin point - though, as we shall show 
subsequently, the former subcase is unlikely to be realized in any actual flow. 

The instability wave solution is constructed in 5 4. The scaling developed in 3 3 
is used in 54.1 to construct a solution that describes the unsteady motion in the region 
where the characteristic wavelength of that  motion is of the order of the transverse 
dimension of the separated region. This solution behaves like a Kelvin-Helmholtz 
instability wave on a vortex sheet that  is nearly parallel to an adjacent wall. But, 
since this wave propagates over relatively large streamwise distances, the effect of 
the slowly varying mean flow must be accounted for even at the lowest order of 
approximation. This is done by using the method of multiple scales (Nayfeh 1973). 
The resulting solution is given by a very simple closed-form expression. It is re- 
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expanded (in $4.2) for positions close to the separation point and is found to be 
invalid there, i.e. it does not provide a valid solution to the linearized inviscid 
equations in a sufficiently small semicircular region about the separation point. Since 
this is precisely the region where the coupling between the forcing and the instability 
wave occurs, we construct a new ‘inner’ solution for this region in $4.3. At this point 
we restrict the analysis to the case where the separation does not occur a t  a Brillouin 
point. 

The geometry is locally flat in the inner region, and finding the inner solution 
amounts to solving a boundary-value problem for an analytic function w (namely 
the complex-conjugate velocity) of the complex coordinate variable z in the upper-half 
z-plane subject to certain boundary conditions specified along the real axis. Thus the 
imaginary part of w is required to vanish on the negative real axis (corresponding 
to the zero-normal-velocity wall boundary condition), and the imaginary part of w 
is given as a linear combination of derivatives of its real part on the positive real 
axis. 

The problem is solved by analytically continuing the positive-real-axis boundary 
condition into the upper-half z-plane to obtain a third-order ordinary differential 
equation with independent variable z and dependent variable w. This equation is 
solved in closed form (even though it has variable coefficients) and it is shown that 
one of its three solutions automatically satisfies the upstream boundary condition 
on the negative real axis. 

In $4.4 we show that this solution also matches, in the matched-asymptotic- 
expansion sense, onto the outer instability-wave solution constructed in $4.1 and is 
therefore the correct ‘ inner ’ solution. The corresponding composite expansion then 
provides a complete (uniformly valid) solution for the instability wave. This result, 
which does not involve external forcing, is also an eigensolution to the problem. It 
turns out that it has a square-root singularity a t  the separation point. 

We then construct (in $ 5 )  a particular solution to the problem which does involve 
external forcing but does not involve an instability wave and therefore remains 
bounded far downstream in the flow. We assume that it is produced by an external 
source located within several wavelengths of the separation point. An explicit formula 
is obtained in $5.1 by using relatively straightforward complex-variable methods. 
It is re-expanded (in $5.1) for points close to the separation point and shown to be 
a uniformly valid solution to the linearized inviscid equations in that region. It turns 
out that this solution also possesses a square-root singularity a t  the separation point. 

The coupling between the forced solution and the instability wave is discussed in 
$6. We first consider the consequences of imposing a Kutta condition to eliminate 
the singularity in the linearized inviscid solution. This determines the ‘ coupling 
coefficient ’ as already indicated. 

Even though our linearized solution is a uniformly valid approximation to  the 
linearized equations, i t  is not necessarily a uniformly valid solution to the full 
nonlinear equations. In  fact, we show that the singularity of the linearized solution 
can be eliminated by accounting for the nonlinear effects that  result from the motion 
of the separation point. The Kutta-condition solution emerges as a special case 
corresponding to negligibly small motion of that point. The relation between that 
motion and the external forcing is, in the general case, determined by the viscous 
effects in the vicinity of the separation point. 

The validity of the analysis is assessed in $ 7 .  It is shown that the non-Brillouin 
point separation considered herein even applies to laminar boundary layers on blunt 
bodies unless the ReynoIds number is extremely large-larger, in fact, than any  
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Reynolds number at which one could reasonably expect the upstream boundary layer to 
remain laminar ! 

Finally, we consider (in 0 8)  the viscous effects near the separation point and obtain 
an explicit expression for the separation-point motion (in terms of the forcing) for the 
special case of quasi-steady laminar separation alluded to above. It turns out that  
the motion is indeed small and the Kutta condition is therefore satisfied in this 
important case. 

2. Formulation 
We consider a two-dimensional incompressible flow over a two-dimensional body 

of characteristic streamwise dimension 1. The upstream flow is assumed to be uniform 
and steady with velocity Us and the Reynolds number Re = Usl/v, where v is the 
kinematic viscosity, is assumed to  be large. We allow the flow to be separated, but 
require that all of its unsteadiness be the direct result of an imposed harmonic motion 
whose frequency we denote by w and whose velocity we require to be everywhere small 
compared with both Us and wl. We suppose that the time has been non-dimensionalized 
by w-l  and that all velocities, pressures and lengths are non-dimensionalized by Us, 
p q  and Us/w respectively. 

We denote the pressure and velocity of the mean flow by P and U =  { U ,  v> 
respectively and, as indicated in $ 1 ,  represent i t  by the appropriate Kirchoff 
free-streamline solution. Then the complex-conjugate velocity 5 = U -  j V ,  where 
j = 2/ - 1 ,t is an analytic function of z = x + j y  in the unseparated region (region 1 
in figure 2), is equal to zero within the separated region (region 2 in figure 2 )  and has 
magnitude 1C01 = ( U2 + Vz): = 1 on the free streamline s that separates these two 
regions. 

The unsteady motion is also assumed to be inviscid. Then i t  can be treated as a 
potential flow in both regions 1 and 2 and, since i t  can be linearized about the mean 
flow in the former region, will have harmonic time dependence with frequency w .  The 
pressure fluctuation aop, (x ,  t )  and the fluctuating part aoul (x ,  t )  of the velocity 
U(x)+a,u , (x , t )  in region 1 can therefore be written as 

and 

respectively, where a. denotes the small constant amplitude of the fluctuation 

is the convective derivative based on the mean-flow velocity, and 

as 

v y l  = 0. (2.3) 

Similarly, the unsteady pressure a,p,  and velocity a, U, in region 2 can be written 

p ,  = i$,(x)ePit 
and 

respectively, where 
u, = {u,, vz> = v[$,(x) 

VZQ2 = 0. 

t Note that we use both i and j to denote 4 - 1, but i t  is necessary to keep the complex variables 
(involving i )  associated with the harmonic time dependence separate from those (involving j )  
associated with the spatial dependence of the complex variable z. 
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The position of the body surface can be described by an equation of the form 

Y--H,(X) = 0, (2.7) 

(2.8) 

where uo h, is small compared with the mean position H,. Then, since the free surface 
is a fluid material surface for both the separated and unseparated flow, i t  follows that 

and the position of the free streamline by an equation of the form 

Y -H&) - "0  h,(x, t) = 0, 

and that the pressure is continuous across s. 
Transferring these to the mean position y = H, of the free surface by expanding 

U ;  V ,  and P in a Taylor series about this position and then linearizing the results 
about the mean-flow pressure-continuity condition and the mean-flow tangency 

dH, 
condition 

V = - U  a t  y = H , .  
dx 

at y = H,. 
ap 

a Y  
PI+&- = P 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Using (2.10), Bernoulli's equation 2P+ V2 + U2 = i7: and the fact that  Uand V satisfy 
the Cauchg-Riemann equations 

and 

au a v  
ax ay 
- - _ _  - 

we obtain upon eliminating h, between (2.11)-(2.13) 

a t  y = H, .  
The boundary condition on the solid surface is 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

v1,2 = - u ~ , ~  dHb on y = Hb. (2.18) 
dx 
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3. High-frequency expansion 
We have already indicated that our interest is in the high-frequency limit where 

the characteristic wavelength U,/w of the unsteady motion is small compared with 
the streamwise dimension 1 of the body, i.e. where 

E = U , / w l <  1 .  (3.1) 

Since the mean flow varies on the scale 1 of the body, it will depend on x and y 
only through the slow variable 

= Z + jzj = ex + jey , 

co = U-jV = F(z) 

(3.2) 

(3.3) 

i.e. the mean velocity will be given by 

independently of E ,  and the mean free-streamline position and body-surface location 
will be given by 

y = H ,  = LB,(- E 4, (3.4) 

1 -  
y = Hb = - Hb(X) 

E 
(3.5) 

respectively, where p, and Eb are, in general, 0(1) quantities that do not depend 
on E .  

Near the separation point, i = 0, the thickness of the separated region will be small 
compared with the spatial scale U,/w of the unsteady motion but, unless the separa- 
tion bubble is very small, will eventflually grow to be O(U,/w).  It is necessary to 
obtain a rough estimate of the characteristic sbreamwise dimension a t  which this 
occurs in order to determine an appropriatL lorm of the asymptotic expansion of 
the eigensolution. We refer to the region that surrounds the separation point and has 
this characteristic dimension as the ‘outer region ’. 

Taking some liberty with the relatively unimportant case of Brillouin point 
separation, we define the scale of the outer region to,be the streamwise distance from 
the separation point where the displacement of the separation streamline is O( U,/w),  
i.e. where 

H,  = O(1) .  

This occurs a t  small values of X when the characteristic transverse dimension Id of 
the body is large compared with U J w ,  and occurs at X = O( 1)  when Id is O( U,/w) 
(see figure 2 ) .  

For small Z (Imai 1953; Sychev 1972; Smith 1977; Birkhoff & Zarantonello 1957, 
pp. 139, 140; Milne-Thomson 1960, pp. 336-340) 

(3.8) 
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where a is a non-negative real constant, band Fare real constants, and we have taken 
the real axis to be tangent to the body surface a t  the separation point 5 = 0. 

The separation point is  a Brillouin point if and only i f  ii = 0 (Imai 1953; Sychev 
1971; Birkhoff & Zarantonello 1957, pp. 139, 140). Since the free-streamline and 
body-surface curvatures are equal to the second derivatives of g, and fib respectively, 
(3.6) and (3.7) imply that these curvatures becomes equal to each other when 
separation occurs at  a Brillouin point and that the free streamline curvature is 
otherwise infinite a t  separation. 

Let x1 = ax be O(1) in the outer region so that S measures the scale of this region. 
Three cases can occur. 

Case (1) d 9 c,  ii? = 0. It follows from (3.6) and (3.7) that 

1 - E 2  
H,  x - b ( $ )  6 x: 

will be 0 ( 1 )  when x1 = 0(1) if we put 

s = Q ,  a=0 .  

= 1 + O(S). 
It then follows from (3.8) that 

Case (2) d 9 E ,  ii > 0. In  this case 

will be 0(1) when x1 = O(1) if we put 

and it follows from (3.8) that 
s =  €13; a* 0, 

= 1 +O(S). 

(3.9) 

(3.10) 

Case (3) d = O ( E ) .  It now follows from thin-airfoil theory that p,, gb = O(e) and 

S = e for d = O(c) .  (3.11) 

c,, = 1 + O ( E )  when d = O(1). Hence in this case we take 

In  all cases then we can write 

y = H ,  = H,(xl) on s, (3.12) 

y = H,, = &,(XI) on the solid surface, (3.13) 

u = 1 + 6U1(x1, Sy) + . . . , 
v =  SV1(zl,Sy)+ ..., 

where H,, Hb, Ul and V, are all 0(1) when z1 and Sy are O(1).  
This suggests that the ‘outer’ solution will possess an  expansion of the form 

(3.14) 

(3.15) 

(3.16) 

4. The instability wave 
The homogeneous solution is constructed in this section by first considering the 

outer region where x1 = O(1). We do so because this is the smallest region over which 
the homogeneous solution exhibits the characteristics of a Kelvin-Helmholtz 
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instability wave. And since we are only concerned with the generation of this wave 
and not with its subsequent evolution, we do not have to consider the flow on any 
larger scale. But, as already indicated, the Kelvin-Helmholtz solution of 3 4.1 
becomes invalid in a small region about the separation point. Since this is just the 
region where the instability wave and forced solution are coupled i t  is necessary to 
construct a new 'inner solution' for this region that matches onto the Kelvin- 
Helmholtz solution in some intermediate or overlap domain. This is done in 54.3. 

4.1. The outer solution 

We first consider the 'outer region' where x1 = O(1) .  Substituting (3.12) to (3.16) into 
(2.1)-(2.6) and (2.16)-(2.18), and equating to  zero the coefficients of So we obtain 

v"y, = 0, (4.1) 

where 
U 

D r - - ,  
aY 

which is just the boundary-value problem for the Kelvin-Helmholtz instability wave 
(Drazin & Reid 1981, pp. 14 ff.) growing on a vortex sheet parallel to a plane surface. 
The effects of the diverging mean flow appear a t  the next order, but produce 'secular' 
terms which cause the first-order solution to become larger than the zeroth when the 
instability wave has propagated over a distance O(8-l) on the scale of x. We avoid 
this breakdown of the expansion in the usual way by using the method of multiple 
scales (Nayfeh 1973, pp. 228, 303) to modify the zeroth-order solution, which now 
becomes 

(4.5) 

where 

cash U(ZJ - Hb) 
F, = (1-a) 

cosh UA ' 

A E H,-H, 

C,, is a constant, the eigenvalue a is determined by the characteristic equation 

(1-a)2tanhaA = - 1 ,  (4.8) 

and the slowly varying amplitude function A(xl) is determined by the requirement 
that the first-order problem, i.e. the problem for 4;:; possesses a solution of the form 

= C,, FitL (y ; xl) exp (4.9) 

so that it will not dominate the zeroth-order solution (4.6) when x = O(S-l). 
Againsubstituting (3.12)-(3.16) into (2.1)-(2.6) and (2.16)-(2.18), but now equating 
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to zero the coefficients of 6 and using (4.5) to eliminate #i:;, we find that #$ti is 
determined by 

(4.10) 

#y)-#P) = -iCo[-(AF,)-ll~aAFl a 
3x1 

for y = H,, and 
D#P) = iC, UH;  AF, exp 

for y = Hb, where the primes denote total derivatives with respect to xl. 
Inserting (4.9) into (4.10), dividing by C,exp i j a  dx), multiplying by F', 2 ,  inte- 

grating by parts over H,  < y < co and Hb < y < H, and using the fact (which follows 
from (4.1) and (4.5)) that D2Fl, ,-a2F,, = 0, we obtain 

(4.13) 

Inserting (4.6), (4.7) and (4.9) into (4.11)-(4.13), we obtain 

for y = H,, and 

( l - a ) F p ) - F P )  = - i  

ia( 1 - a )  
cosh ad 

DFP) = HLA 

(4.17) 

(4.18) 

for y = Hb. 
Adding (4.14) and (4.15) using (4.16)-(4.18) to eliminate Fi:)2, inserting (4.6) and 

(4.7) and carrying out the integrations, we obtain after considerable manipulation 
which takes advantage of (4.8) 

(4.19) 
ad +3]' = 0. 

(2 sinh ad cosh ad a - 1 

Since differentiating (4.8) with respect to A yields 

ad a: 

2 sinh ad cosh ad (l 'iz) = G' 
(4.19) can be written as 
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which upon integration becomes 

3 sinh 2aA d a  A2 = 
2a2 dA’ 

where we have set the irrelevant constant of integration equal to :. Finally using (4.8) 
we obtain the remarkably simple result 

cosh ad ( :;)4 
A = - -  3- 

a(1 -a)  
(4.20) 

Except for the multiplicative constant C,, the lowest-order outer solution (4.5) is now 
completely determined. C, is the ‘ coupling coefficient ’ alluded to in 8 1. 

4.2. The inner expansion of the outer solution 

We now consider the limiting form of this solution as xl+O. Since A 3 0  in this limit, 

a3d+-l as xl+O, it  follows from (4.8) that  

or, choosing the root corresponding to the spatially growing wave, 

a + e-tin/A+ (4.21) 
and da  a 

d A + - G  
- (4.22) 

as x,+O. 

(3.4)-(3.7), (3.9)-(3.11) and (4.20) that 
Then since A EE H,-H,,  and S is certainly small when x1 is, it  follows from 

(4.23) 

A + c d x ~  = SKcxf for E = 0,  (4.24) 

1 s  A +:‘SX~ = ax! for a + 0, 

where K = i, 0 ford = O ( l ) ,  O(e) ,  and 

A + l  as x,+O, 
where we have put 

- 
a ,  b,  F for d = O(l), 

a 6 c  
-, -, - for d = O(6)  
€ 6 8  

a ,  b ,  c = 

(4.25) 

(4.26) 

so that, with one possible exception, the real constants a,  b and c are independent 
of e in all cases. The exception occurs because, as indicated in $ 7 ,  actually scales 
with the inverse Reynolds number to the & power, independently of e, for the case 
of slender body laminar separation. But this causes no difficulty for our purposes and 
the reader can, for consistency, always suppose the e is of the order of the -& power 
of the Reynolds number in this case. 

Hence i t  follows from (2.2), (3.16), (4.5) and (4.6) 
c o ~  8-1 i-i/r 

ul+{i, - 1) rS“r-1 (T) e~p[A(&)”~(i-&)-it] as x,+O, (4.27) 

where ~~-971  
b = ~ ,  r=2, A = -  if a > 0, 

a: 
(4.28) 

ee-4in 
y = ( j ,  A=--- if a = 0. (4.29) 

- ( 8  for d =  O(I) ,  
S =  1 6  for d = O ( € ) ,  Ci 
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As already indicated, this solution becomes invalid in a small semicircular region 
surrounding the separation point x, y = 0. It does not, for example, have zero normal 
velocity on the solid surface just upstream of this point as required by (2.18) and 
(3.7) and it is not even valid in the downstream region where x > 0 and x = O(y). 
Thus (4.10) and (4.21)-(4.23) imply that 

when a > 0, so that  the first-order term becomes as large as the zeroth-order term 
and the assumed expansion (3.16) breaks down. 

4.3. The inner solution 

However, the form of (4.27) suggests that  we can obtain 
surrounding the separation point by introducing the new 

the solution in the region 
‘inner variables ’ 

(4.30) 

into the governing equations. For simplicity, we only’ consider the case where 
separation does not occur a t  a Brillouin point (i.e. the case where ii > 0). 

Since (3.5), (3.7), (3.10), (3.11), and (4.26) imply that 

Hb = S2bx2 for d = O(e) (4.31) 

Hb = S3bx2 for d = O ( l ) ,  (4.32) and 

and since yz < xz in region 2, i t  follows from (2.4)-(2.6) and (2.18) that  the solutions 
in this region will be of the form 

p ,  = S j p ( X , ,  t )  + . . . , 
uz = .I,”’(.,, t )  + . .-, 

(4.33) 

(4.34) 

(4.35) 

where, as indicated by the arguments, &”) and ii?) are independent of y2. 

1 will have an expansion of the form 
The form of the free-surface boundary condition suggests that  the solution in region 

p ,  = ~ i p ) ( x 2 , Y z , t ) + . . . ,  

u1 = Siiy (zz, yz, t )  + . . . , 
v1 = S G y ( X z , y z , t ) +  .... 

Since (3.4), (3.6), (3.8), (3.10), (3.11) and (4.26) imply 

H ,  = u&xj+ ..., 

Y u= 1+:&a7+ ..., 
xz 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

v = $&xi+ ..., (4.41) 
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provided that y 4 x. Substituting (4.30) and (4.33) to (4.38) into (2.16) to (2.18) yields 

&@ = pp)(xz, t )  for x2 > 0, 

GY) = 0 for x2 < O ,  

(4.42) 

(4.43) 

(4.44) 

where, to the order of approximation of the analysis, we can suppose that the 
boundary conditions are imposed at y, = 0 and we have used total derivatives to 
indicate that the quantities are independent of y,, even though they still depend 
on t .  Equations (2.1)-(2.5) imply that 

P'10'(X2, y,, t )  = -3  Y)(xz, Yz, t ) ,  (4.45) 

(4.46) 

w = G(0) - . l o )  
1 - 1 3% (4.47) and that 

is an analytic function of the complex variable 

z, = x,+ jy, (4.48) 

Eliminating j??), &') and @)) between (4.42), (4.43), (4.45) and (4.46), using (2.2) to 
eliminate the derivative with respect to time and inserting (4.28), we obtain 

This boundary condition will clearly be satisfied if the analytic function W1 introduced 
in (4.47) and (4.48) satisfies the ordinary differential equation 

(4.50) 

and if we can obtain a solution that also satisfies (4.44), we will have succeeded in 
solving the complete inner problem. 

In order to solve (4.50), we introduce the new independent variable 

to obtain 
d3W1 3 d2W -+--+ jA3w1 = 0, 
d!P T d P  

which possesses the solution 
w = l e j h T - i t  

OT 

where co is an arbitrary constant. Or in terms of real quantities 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

Equation (4.51) implies that t = 0 when yz = 0 and x2 < 0. Hence i t  follows from 
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(4.55) that Vp) vanishes and the boundary condition (4.44) is indeed satisfied. 
Equations (4.54) and (4.55) therefore provide an acceptable lowest-order inner 
solution. We must now show that they can be 'matched' onto the outer instability- 
wave solution (4.5), i.e. that they can be made to coincide with its inner expansion 
(4.27) (see (4.28)) in some overlap domain. 

4.4. Hatching inner and outer expansions 

To this end note that (4.51) implies 

[+xi, q+-  Y Z  as xz++oo withy,fixed. 
2x5 

Hence i t  follows from (4.28), (4.37), (4.38), (4.54) and (4.55) that 

{ul,vl}+{i, -I)%exp[h( ixi-+)-it] as %,+a. 
2x5 2x5 

(4.56) 

(4.57) 

Equations (4.28) and (4.30) now show that this will coincide with (4.27) it  we take 

co = C0h/62. (4.58) 

This completes the solution for the instability wave. 

5. The forced solution 
In this section we construct a forced or particular solution due to a harmonic point 

(5.1) 
source a t  

h Y >  = { ~ O > Y O } ,  .:+YE = O(1). 

We suppose that the result does not involve a Kelvin-Helmholtz instability wave and 
therefore that it remains bounded at  downstream infinity. We again consider only 
the case where the separation point is not a Brillouin point. 

Equation (5.1) implies that the dimensional distance between the source and 
separation points is O( U , / w ) ,  i.e. that the source is located within several wavelengths 
of the separation point. This simplifies the analysis without significantly affecting the 
coupling between the forcing and the eigensolution of $4, which is, of course, the 
primary issue of this work. In  fact, we subsequently show that this coupling is 
substantially independent of the precise nature and location of the source. 

In $5.2 we show that the present result, unlike the eigensolution of $4, is a 
uniformly valid solution of the linearized inviscid equations in any neighbourhood 
of the separation point. 

5.1. Construction of solution 

We begin by finding the appropriate form of the boundary and jump conditions. Since 
5, jj = 0(1) is small on the scale of (5.1), H,,, H,, U and V are again given by (4.31) 
or (4.32) and (4.39)-(4.41) respectively. 

Substituting these into (2.16)-(2.18), we obtain 

+ - (u, - ul) + 2i + 0(62) ,  (5.2) 22 "1 (;+&)f12-zv1 a = $asxi a", av, a 
[ax ay at 

(5.3) 
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for y = daxi, x > 0 and 

v l , 2  = O(J2) for y = 0, x 5 0. (5.4) 

Transferring (5.2) and (5.3) to y = 0 by expanding in a Taylor series, using (2.2), 
(2.3), (2.5) and (2.6) to eliminate avl,.Jay and (5.4) to eliminate v2 and av2/ax from 
the result, we obtain 

and 
for y = 0, x > 0, (5.5) 

Equations (5.4)-(5.6) suggest that the solution will have an expansion of the form 

$1,2 = $~)2 (X ,Y)+d$~)2 (X ,Y)+ . . .  (5.7) 

and that p19 2 ,  ul, and vl, will possess similar expansions with p??:), ufy:) and do, 1,2 l) 

determined from the corresponding $19,;) by (2.1), (2.2), (2.4) and (2.6). Notice that 
we are using the same notation as was used in (3.6) for the homogeneous solution, 
but this should cause no confusion. 

For definiteness, we choose the source to be such that 

$,+In [(x-xo)2+ (Y - yo)"$ as 2, y+xo, Yo. (5.8) 

(5.9) 

Then it follows from (5.4)-(5.6) and (2 . l ) ,  (2.2), (2.4) and (2.5) that 

$i0) = In [ ( X - X ~ ) ~  + (y- y0)2$+1n [(x-z0)' + (y+ 
and that 

(5.10) 

Thus the zeroth-order solution is just the solution for a point source near a doubly 
infinite plane wall, and Ph(x) is just the streamwise surface pressure gradient produced 
by that source. 

Substituting (5.7) into (2.1) and (2.2), using the result together with (5.9) in (5.4) 
and (5.5), we obtain, upon subtracting out the zeroth-order solution and using (4.28), 

v p )  = O for y = 0, x < 0, (5.11) 

(5.12) 

(5.13) 

Since (2.2) and (2.3) imply that u y ) - j v Y )  is an analytic function of z = x+jy, it 
follows from (5 . l l ) ,  (5.12) and the theory of analytic functions that 
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5.2. The inner expansion 

Near z = 0 (5.14) behaves like (Gakhov 1966, pp. 55, 56) 

(5.15) 

Hence i t  follows from (2.2), (5.7) and (5.9) that  the complete solution behaves like 

Introducing the inner variable T ,  defined by (4.30), (4.48) and (4.51), we find that 

(5.18) 

when T = O(1). 
By introducing the inner variables xz  and y2  into the boundary conditions 

(5.4)-(5.6) it is easy to  show that (5.18) represents the correct expansion of the forced 
solution in the 'inner' region x2, y2 = 0 ( 1 ) ,  i.e. the expansion (5.7) is uniformly valid 
in both the inner and outer regions to the order of approximation of the analysis. 

6. Determination of amplitude of instability wave - the receptivity problem 
As noted in $ 1 ,  both the forced solution (5.19) and the instability-wave eigen- 

solution (4.53) possess square-root singularities at the separation point x ,  y = 0. 
We can now eliminate the singularity, i.e. impose a Kutta condition, by adding these 
two solutions and adjusting the arbitrary constant co to cancel the singularity. Thus 
it follows from (4.371, (4.38), (4.47), (4.51), (4.53) and (5.19) that the Kutta condition 

6 
will be satisfied if we take 

A3 

Hence i t  follows from (4.28) and (4.58) that  the initial amplitude C, of the instability 
wave (4.5), which we refer to as the 'coupling coefficient', is given by 

c, e+ = t ) .  (6.1) 

3s2 
4h 

C, = --a[P'(O, t)eit]. 

Although, as indicated in $1,  the validity of the Kutta condition is now well 
established for sharp trailing edges, it has not been previously proposed for flows 
separating from smooth surfaces. It is therefore worth providing some evidence for 
its validity in this case. To this end, we must first consider the more general case where 
this condition is not imposed. Then since both the forced solution (5.19) and the 
instability-wave solution (4.53) become singular a t  the separation point, the spatial 
gradients become large and cause the flow to behave in a quasi-steady - though 
possibly nonlinear - fashion there. There will therefore be a small region (relative to 
the size laS of the inner inviscid region) where the complete solution (steady plus 
unsteady) is given by a Kirchhoff free-streamline solution with its separation point 
displaced from the steady position by an amount lea, Re xs ecit and with its effective 
freestream velocity differing from the steady value of unity by an amount 
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a, Re u, e@, where Re denotes the real part with respect to i. Thus assuming that 
leaolx,l -4 lea, i.e. 

(6.3) Ix,I a, << 8, 

the solution in this region is given by 

3j - 
2 

6, = 1 + Re (a,  u, -- (a + a, Re El (Z-  €01, Re x, + . . . (6.4) 

rather than by the appropriate approximation to the steady Kirchhoff solution (3.8) 
plus an unsteady perturbation. 

Equation (6.4) implies that dg/d% becomes infinite at the separation point, and 
consequently insures that the convective terms will dominate the time-derivative 
term in the Euler equations. This suggests that the (nonlinear) quasi-steady 
approximation (6.4) will indeed satisfy the relevant inviscid equations in the vicinity 
of the separation point. 

In fact, it  can be shown by direct substitution that these equations are satisfied 

by 1 
) -$(a + - a, Re a, ecit 

Ad 
5, = 1 +Re (a, u, ecit 

+ao Re [ (iu, - x,) zo + O(&, (6.5) 

(6.6) g, = -Re ia, [z, edt  + O(zb)] ,  

ia(x, - he)} xi + O(xt )  as zo + 0, (6.6) 

where x, = x - a, Re x, ePit, (6.7) 

zo = x, + jy, (6.8) 

and we have put a, = A&,, AG, for d = 0(1), O ( E )  in anticipation of the fact that ti, 
can be O(8-l) as E + O ,  and used (3.10), (3.11) and (4.26). 

It now appears that for both laminar and turbulent boundary layers and for both 
steady and moderately unsteady separations (Sychev 1972, 1979; Sychev & Sychev 
1980; Smith 1977; Elliott, Smith & Cowley 1983) the viscous and nonlinear flow in 
the vicinity of the separation point is determined by a local reaction and will match 
onto the solution (6.5) a t  large distances from the reaction zone, which can always 
be taken as small relative to the scale Is8 of the inner inviscid region when the 
Reynolds number is sufficiently large relative to e-l. The coefficient 
a+ (Ad)-, a, Re a, e@ is determined by the flow in the interaction zone, a being the 
steady-state value and (A8)-la0 Re a,  ePit being the deviation produced by the 
unsteady motion (see e.g. discussion of the quasi-steady laminar separation in $8). 
The determination of a and a, requires a detailed solution of the viscous flow in the 
interaction zone. 

We assume that u, can be expanded as 

u, = up)+Sug)+ ... . (6.9) 

Notice, however, that z i  cannot necessarily be expanded in powers of a0 when 
z = O(a,), as it usually will be within the interaction zone, but it can be so expanded 
when z is sufficiently large, as it will be in the inner inviscid region, .% = 0(8e) ,  
according to the inequality (6.3). Then in the latter region (6.5) becomes 

6, = e-it+0(83), (6.10) 
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where we have introduced the inner inviscid variable T given by (4.30), (4.48) and 
(4.51) and dropped the symbol Re, since the expression is now linear in ePit. Here 
co denotes the appropriate approximation to the steady Kirchhoff solution (3.8). 

It follows from (4.53) that  the instability-wave solution behaves like 

u, - jv, = 6co [ i- A - $jA2T+ iA3T + O( T 3 )  e-it + co O(#). (6.11) 1 
Matching this with (5.18) and (6.10), we find upon using (4.28), (6.8) and (6.9) that 

(6.12) 
2x u(o) = -0 , up) = ~Aa[P;(O,O)-x,], 
6 

a, = -2[x,- P@,O)], 

3a 
4 

and most importantly that 
co = -- [Ph(O, 0) -x,]. 

(6.13) 

(6.14) 

Hence it follows from (4.58) that  the amplitude C, of the instability wave (4.5) is now 

(6.15) Co = -~8Za[P~(0,0)-x,], 

which reduces to  the Kutta-condition result (6.2) when Ix,( 4 Ph = O(1). I n  $8 we 
shall show that this is indeed the case for quasi-steady laminar separations. 

The previous analysis demonstrates that  the singularity can be eliminated from 
the linearized inviscid solution by accounting for the nonlinear effects resulting from 
the motion of the separation point. The relation between the amplitude x, of the 
separation point motion and the pressure-gradient amplitude Pi produced by the 
forcing is determined by viscous (and non-parallel flow) effects in the vicinity of the 
separation point. The Kutta condition is approximately satisfied only when x, is 
negligibly small relative to  Pi. We show that this is the case for laminar quasi-steady 
separations in $ 8. Notice that the instability wave is always present when x, differs 
from -Pi. 

It now follows from (2.21, (3.161, (4.5), (4.6) and (4.20) that  to lowest order of 
approximation the streamwise velocity fluctuation produced by the instability wave 
is given by 

given by 3 

4A coshad 1 -a ( 3 z ) * e x p {  da ' -a(y-HJ+i[ ~ a ( x , ) d x - t  0 11 , P3i , 
El = -[Po(O,O)-x,]a- 

(6.16) 

where A = H ,  - Hb is the local thickness of the separated region, and the wavenumber 
a is given by the dispersion relation (4.8). The latter is plotted against A in figure 3, 
which shows that it goes to the limit (4.21) for small A .  (The curves are fairly well 
represented by the first two terms in the asymptotic expansion, i.e. by 

e-jin 
a = -+$+O(Ai)  A4 

for A < 0.1.) 
For large A ,  a goes to the unbounded vortex-sheet limit 1 -i. The figure shows that 

a is fairly close to this value when A z 2. Notice that the equation following (4.19) 
then implies that 
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FIQURE 3. Variation of complex wavenumber with separated-region thickness. 

7. Applicability of the analysis 
Since the present analysis is basically inviscid and since the laminar separation 

point approaches a Brillouin point as the Reynolds number Re+m with the 
transverse body dimensions held fixed, i t  might, at first, appear that  our assumption 
of non-Brillouin-point separation restricts the applicability of this work to turbulent 
boundary layers (or to  thin bodies a t  small angles of attack). But all real flows are 
viscous and the coefficient fi of the first term of (3.6) or (3.8) is; as shown by Sychev 
(1972), proportional to Re-h rather than being equal to zero for laminar flow. This 
term will then always be important for sufficiently small values of Z, i.e. in some region 
close to the separation point, and one must give very careful consideration to the 
conditions under which i t  can be neglected. 

The high-Reynolds-number analyses of Smith (1977, 1979) and Sychev (1972) 
clearly demonstrate that  the viscous effects are confined to thin shear layers and 
narrow boundary layers with thickness O(Re-:) and that the flow outside these regions 
is inviscid and irrotational to  O(l2e-i) even though i t  involves terms @Re-h) due 
to  the displacement of the separation point through the action of viscosity. Thus the 
steady outer solution, which applies outside the boundary-layer, shear-layer and 
‘ triple-deck ’ region, is still given to O(Red) by the inviscid Kirchhoff solution (3.8), 
but with 

where 

and c i  = O(1) as e,,+O. The flow takes on the well-known ‘triple-deck’ structure in 
a region of dimension O(sg) that  surrounds the separation point (Sychev 1972). This 
is a particular example of the local interaction alluded to in $6. 

a = a,& (7.1) 

e,, = Red, (7.2) 
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If the non-Brillouin-point term && were dominant in the inner inviscid region, it 
would, in view of (7.1), be more appropriate to take ( E ~ C ) !  as the inviscid region scale 
for a blunt body with d = 0( 1)  (see (4.27) and (4.28)) rather than d ,  as given by (3.10) 
and (4.30) with r = 2. Thus the characteristic dimension of the inner inviscid region 
would then be 

which will be large compared with the size Z E ;  of the ‘triple deck ’ if 

(€* E)!  E l ,  

S F - 4 Re;, 
1 

(7.3) 

where S is the Strouhal number based on the characteristic streamwise body 
dimension 1. This condition insures that there will be a region outside of the triple 
deck where the inner inviscid solution remains valid. Since, as indicated at  the end 
of this section, (7.1) is independent of the slenderness ratio ( E  in our case), (7.3) also 
applies for slender bodies. 

It can be shown that the lowest-order inner inviscid solution for the unsteady flow 
is unaffected by the second term in (3.6). Then it follows from (3.2) and (7 .1)  that 
the non-Brillouin-point term will dominate in the inner inviscid region z = 0 ( ( e 0  E ) ! )  
of the blunt body if 

or 

8 

€@(so 6): 9 &(EO E ) f  (7.4) 

1 1  1 

e 4 
Thus the non-Brillouin-point term should be dominant in the inner inviscid region 

even for relatively small Strouhal numbers, say 2 or 3, a t  any Reynolds number for 
which the boundary layer can reasonably be expected to remain laminar. We 
therefore expect the present analysis to apply to blunt bodies with laminar boundary 
layers when? 

S F - 9 = Rew. 

Re& 4 S 4 Rei. (7.5) 

It is worth noting that (7.3) is also the condition for which the flow in the ‘triple 
deck’ will be quasi-steady (Brown & Cheng 1981). 

Since the scale of the inner inviscid region on a blunt body is sa (see (3.9)’ (4.29) 
and (4.30)) when the non-Brillouin-point term ii & is completely negligible there, it 
follows from (3.2), (3.6) and (7 .1)  that this occurs when 

S 4 Re&, (7.6) 

which, in view of the restriction S 9 1, is certainly difficult to achieve in practice. 
Cheng & Smith (1982) show that 6 = 0 (4) independently of E for laminar boundary 

layers even when the ratio E of transverse to streamwise body dimensions is small. 
Thus 5 = O(&, while 6, F = 0 ( s )  in the slender-body case. Since the distance between 
separation and Brillouin points is roughly determined by the relative magnitudes of 
the first and third terms in (3.6), it is now clear that this distance can (as indicated in 
$ 1 )  remain O(1) as Re+ co if E / E ~  is held fixed in this limit, i.e. if B = 0(&. 

-f It may then be necessary to include additional terms (involving C )  in the forced solution (5.13) 
and (5.14), but these will not contribute to the asymptotic form (5.18) that applies in the inner 
inviscid region, and therefore cannot effect the coupling coefficient, which is our only concern in 
this work. 

4 FLM 145 
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8. Validity of the Kutta condition 
We now show that the Kutta condition is satisfied to lowest order of approximation 

for quasi-steady laminar separations. We consider only the blunt-body case where 
the steady coefficient 6 is given by (7 .1 ) .  Condition (7.3) insures that the unsteady 
interaction region for the complete (steady plus unsteady) solution in the moving 
reference frame will have the same triple-deck structure as was found for the steady 
case by Sychev (1972) and Smith (1977) to lowest order in e0. Though, as shown by 
Brown & Cheng (1981), unsteady foredecks must be incorporated in order to match 
it to the unsteady upstream boundary layer. In fact, the only change is that the scaled 
lower-deck velocity U (see Smith 1977) must now satisfy the wall boundary condition 

U = - -  -a, Re ix, ePit, 

which results from the motion of the separation point and leaves the triple-deck 
structure unchanged as long as Ix,I a, = O(s,) ,  which we now assume to be the case. 
(Recall that the coordinate system is attached to the separation point and that we 
can make the amplitude a, of the forcing be as small as we like.) Here is the scaled 
skin friction of the attached laminar boundary layer just ahead of the separation 
point. 

Since (7.3) ensures that the time only enters as a parameter within the triple deck, 
it is easy to see from (2.4)-(2.6) of Smith (1977), say, that a+ (a,/AS) Rea,e-it must 
be representable as a function of the form 

Then assuming that Ix,la, 4 E, and that f ( 0 )  =k 0, CO, and expanding for small 

(8.3) 
lxsl ao/eO, we obtain a = a = &+y(O) 
and Ui 

€8 
a, = -ASTf(0)ixs, 

where the prime denotes a derivative with respect to the indicated argument. 

f(0) x x 0.44, (8 .5)  
Smith (1977) showed that 

and, using (3.10) and (6.13) to eliminate a,, we obtain 

where (4.28) and (8.3) show that & A  = O(1) as a,+O and 

p = (.;/s)i (8.7) 

is 4 1 when the quasi-steady condition (7.3) holds. 
Thus, as anticipated in $6, x, is small relative to P;(O,O), and the Kutta condition 

is therefore satisfied in this case. Although this result was, for simplicity, established 
only for the blunt-body case, it also applies to slender bodies because a is still 
independent of s in this case. 
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9. Summary and discussion 
The analysis was, in the main, restricted to the case where the separation point 

is not a Brillouin point. We have, however, shown (in $7)  that this is the only case 
likely to be encountered in practice. The most important results of this work are the 
formulas for the initial amplitude C, of the instability wave or ‘coupling co- 
efficient’: (6.15) in the general case and (6.2) when an unsteady Kutta condition 
is satisfied at  the separation point. Even though these results were, for definiteness, 
derived for a particular source, they are actually independent of the detailed nature 
of that source and depend only on the amplitude Ph(0, t )  eit of the streamwise pressure 
gradient that would be produced at  the separation point in the absence of flow 
separation. That this is also true for instability waves generated at sharp trailing 
edges, was deduced from physical considerations by Morkovin & Paranjape (1971). 

When the unsteady Kutta condition is satisfied, (6.2) and (4.28) imply that the 
coupling coefficient will be proportional to I$, where ii is the lowest-order expansion 
coefficient in the equation (3.6) for the steady separated streamline near the 
separation point. We expect that the latter quantity will exhibit a rather complicated 
dependence on the global properties of the mean flow when the upstream boundary 
layer is turbulent, and we know that it is determined by a local interaction when the 
separation is laminar. In fact, i t  is then given by (8.4) and (8.6), where the only global 
dependence is through the scaled skin friction c of the laminar boundary layer just 
upstream of the separation point. These results also show that the coupling coefficient 
is proportional to the Reynolds number to the -& power in this case. 

Equations (3.10), (3.11), (4.26) and (4.28) show that it is proportional to B! = 1/8i 
€or both slender and blunt bodies. Here S = l/e is given by (3.1). Thus the coupling 
coefficient should decrease with the frequency to the -: power when the Kutta 
condition is satisfied, which should be the simplest of our results to actually verify 
experimentally. 

The Kutta condition will be satisfied when the dimensionless amplitude x, of the 
unsteady separation point motion is small relative to the unsteady pressure-gradient 
amplitude G, in which case (6.5) will reduce to (6.2). The relation between x, and 
Po must be determined by analysing the strong viscous (and non-parallel flow) effects 
that result from the steep velocity gradients in the vicinity of the separation point. 
We did this for the important special case of quasi-steady laminar separation, which 
occurs when 

We found that 5, and Pi are then related by (8.6) and (8.7), which show that the 
Kutta condition is satisfied in this case. It is less likely to be satisfied at higher 
frequencies, since (8.7) shows that the dimensionless separation-point displacement 
amplitude 2, increases with frequency. Notice, however, that the dimensional 
separation-point displacement amplitude kxS still exhibits the expected decrease in 
magnitude. 

The Kutta condition is satisfied for unsteady flow at a sharp trailing edge even 
in the fully unsteady limit where B = O(st) (Daniels 1977; Brown & Daniels 1975), 
but the results of $ 8  strongly suggest that this will not be true in the present case 
of separation from a smooth surface. 

B; p €. 
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